KARAKTERISTIK SIFAT KIMIA DAN MIKROBIOLOGI SILASE AMPAS TAHU MENGGUNAKAN TAPIOKA SEBAGAI AKSELERATOR

(Chemistry and mycrobiogical characteristics of tofu waste silage using of tapioca as accelerator)

Yeni Karmila, Yatno*, Suparjo, Rasmi Murni Program Studi Magister Ilmu Peternakan Pascasarjana Universitas Jambi

Abstrak

Penelitian ini bertujuan untuk mengetahui pengaruh penggunaan berbagai level tapioka terhadap kondisi kimia (pH, Bahan Kering, N-Amonia, Asam Laktat dan Nilai Fleigh) dan mikrobiologi (Populasi bakteri asam laktat) silase ampas tahu. Bahan yang digunakan pada penelitian ini adalah ampas tahu, tepung tapioka, dan probio-FM. Alat yang digunakan pada penelitian ini adalah kain pemeras, selotip, pH meter, termometer, plastik bening bervolume 2 kg, karet, tali plastik, baskom, dan timbangan. Metode penelitian ini dilaksanakan dalam 3 tahap yaitu persiapan alat dan bahan, pembuatan silase dan analisis kualitas silase secara fisik. Rancangan yang digunakan adalah Rancangan Acak Lengkap (RAL) dengan 4 perlakuan dan 5 ulangan. Perlakuan yang diterapkan adalah berbagai level penggunaan tapioka sebagai akselerator dalam silase ampas tahu vaitu : T0 (0%), T1 (3%), T2 (6%) dan T3 (9%). Data yang dihimpun dianalisis menggunakan analisis ragam, apabila terdapat hasil yang berpengaruh nyata pada perlakuan maka dilanjutkan dengan uji DMRT (Duncan Multiple Range Test). Hasil penelitian menunjukkan bahwa penggunaan tapioka sampai 6% berpengaruh nyata (P<0.05) terhadap Bahan Kering, Nilai pH dan Nilai Fleigh, namun tidak nyata (P>0.05) terhadap kandungan N-Amonia, asam laktat dan populasi bakteri asam laktat silase ampas tahu. Hasil penelitian dapat disimpulkan bahwa penggunaan 6% tapioka sebagai akselerator mampu menghasilkan silase ampas tahu berkualitas, yang ditandainya dengan populasi bakteri asam laktat, dan asam laktat yang tinggi, pH asam serta nilai NF yang cukup baik.

Kata Kunci: Silase Ampas Tahu, Tepung Tapioka.

Abstract

This study aims to determine the effect of the use of various tapioca levels on chemical conditions (pH, Dry Matter, N-Ammonia, Lactic Acid and Fleigh Value) and microbiology (population of lactic acid bacteria) tofu waste silage. The materials used in this study are tofu waste, tapioca flour, and probio-FM. The tools used in this study were blackmailers, masking tape, pH meters, thermometers, clear plastic with a volume of 2 kg, rubber, plastic ropes, basins, and scale. The research method was carried out in 3 stages, namely preparation of tools and materials, making silage and analyzing the quality of physical silage. The desing used was a completely and 5 replications. The treatments applied are various levels of tapioca use as an accelerator in tofu waste silage, namely: T0 (0%), T1 (3%), T2 (6%), and T3 (9%). Data collected were analyzed using analysis of variance, if there were results that had a significant effect on the treatment the continued with the DMRT (Duncan Multiple Range Test). The results showed that the use of tapioca up to 6% had a significant effect (P<0.05) on Dry Matter, pH value and Fleigh value, but it was not significant (P>0.05) on the content of N-Ammonia, lactic acid and bacterial population of lactic acid tofu waste silage. The results of the study concluded that the use of 6% tapioca as an accelerator was able to produce quality tofu waste silage, which was marked by a population of lactic acid bacteria, and high lactic acid, acidic pH and a fairly good NF value.

Keywords: Tofu Waste Silage, Tapioca Flour.

PENDAHULUAN

Latar Belakang

Ampas tahu merupakan hasil sampingan atau limbah dari pengolahan kedelai menjadi tahu. Ampas tahu masih mengandung protein yang relatif tinggi. Kandungan protein kasar ampas tahu sekitar 22,64 % dan energi bruto 4010 Kkal/Kg

(Anggraeni et al., 2013). Berdasarkan kandungan protein kasar tersebut ampas tahu dapat digolongkan sebagai pakan sumber protein bagi ternak.

Bahan pakan dapat digolongkan sebagai sumber protein bila bahan tersebut mengandung protein minimal 20 % dan harus tersedia secara kontinyu atau dapat disimpan

* Korespondensi (corresponding author):

e-mail: yatno@unja.ac.id

dalam jangka panjang. Tetapi daya simpan ampas tahu segar sangat pendek disebabkan kadar airnya yang relatif tinggi yaitu 70-80 % (Li et al., 2013). Kandungan ampas tahu vang cukup tinggi dapat mempercepat terjadinya proses pembusukan, maka diperlukan adanya teknologi untuk menanganinya agar nilai gizinya tidak dapat berubah sebelum digunakan sebagai bahan pakan. Salah satu cara untuk mengatasi hal tersebut memanfaatkan ampas tahu da-**Ma** vaitu dengan lam bentuk silase. Dimana Silase merupakan pakan awetan yang telah mengalami proses ensilase atau fermentasi oleh bakteri asam laktat dalam kondisi anaerob atau kondisi tanpa udara dan oksigen yang disimpan dalam silo sebagai tempat penampungan silase.

Prinsip dasar pembuatan silase adalah menjaga kondisi anaerob dan mempercepat penurunan pH melalui aktifitas bakteri asam laktat. Dalam aktivitasnya bakteri asam laktat membutuhkan karbohidrat yang mudah dicerna agar kandungan karbohidrat yang terdapat didalam ampas tahu tidak dirombak oleh mikroba maka perlu ditambah karbohidrat mudah larut dalam air (WSC = Water soluble Carbohydrate) sebagai akselerator.

Penambahan Akselerator berfungsi sebagai sumber makanan dari bakteri atau sebagai aditif tidak langsung untuk menstimulasi supaya bakteri memperoleh nutrien dari akselerator sehingga akan memproduksi asam laktat yang banyak. Salah satu akselerator yang dapat digunakan adalah tapioka yang mengandung karbohidrat yang mudah terfermentasi. Tapioka merupakan suatu produk olahan ubi kayu melalui pengeringan (Muller et al., 1975). Menurut Moorthy (2004) kadar amilosa tepung tapioka berada pada kisaran 20-27 %. Amilosa yang ada didalam tapioka dimanfaatkan sebagai makanan untuk bakteri sehingga karbohidrat yang terdapat didalam ampas tahu masih dalam keadaan baik.

Inokulan yang ditambahkan dalam penelitian ini berupa probio-FM. Probio-FM merupakan mikroba hidup (probiotik) terdiri atas berbagai spesies bakteri asam laktat dan bacillu (Manin, et al., 2013). Karakteristik dasar yang harus dimiliki oleh inokulum bakteri asam laktat dalam ensilase adalah mampu beradaptasi pada bahan dengan kadar air tinggi, suhu lingkungan yang tinggi, toleran terhadap

* Korespondensi (corresponding author):

e-mail : <u>yatno@unja.ac.id</u>

keasaman, menghasilkan bakteriosin, dan berperan sebagai probiotik (Ohmomo et al., 2002).

Untuk mengetahui keberhasilan proses ensilase dapat dilihat dari tingkat derajat keasaman (pH), Bahan Kering (BK), jumlah N-Amoniak (NH₃), asam laktat dan populasi Bakteri Asam Laktat (BAL) yang dihasilkan.

METODE PENELITIAN

Materi

Bahan yang digunakan pada penelitian ini adalah ampas tahu, yang diperoleh dari perusahaan pembuatan tahu berlokasi di Simpang Rimbo Kota Jambi, tapioka sebagai akseleratordan probiotik Probio-FM sebagai inokulan.

Metode

Penelitian ini dilaksanakan dalam 3 tahap yaitu persiapan alat dan bahan, pembuatan silase dan analisis kualitas silase secara fisik.

Persiapan Alat dan Bahan

Silo yang digunakan berupa plastik bening berkapasitas 2 kg sebanyak 2 lapisan yang telah dimodifikasi bagian bawahnya sehingga tidak terbentuk celah pada saat proses ensilase. Bahan yang digunakan adalah ampas tahu dari limbah pabrik pembuatan tahu. Peralatan yang digunakan dibersihkan terlebih dahulu kemudian dikeringkan.

Pembuatan Silase

Ampas tahu segar terlebih dahulu diperas dengan menggunakan kain serbet hingga kadar airnya sekitar 60%. Ampas tahu ditimbang lalu dicampur dengan inokulan probio FM sebanyak 2,5 % dari berat ampas tahu kemudian diaduk hingga homogen. Selanjutnya ditambahkan akselerator berupa tapioka dengan taraf 0%, 3 %, 6 %, 9 % diaduk kembali, setelah tercampur merata dimasukkan didalam silo yang terbuat dari plastic kaca lalu disimpan selama 15 hari. Setelah 15 hari silase dibuka kemudian di analisis secara kimia dan mikrobiologi. Selengkapnya alur pembuatan proses silase ampas tahu dicantumkan pada Gambar 1.

Gambar 1. Proses Pembuatan Silase Ampas Tahu

Analisis Kualitas Silase Secara Fisik

Analisis kualitas silase secara fisik dilakukan pada hari ke 15 setelah ikatan pada plastik dibuka dibiarkan selama 3-5 menit. Setelah itu lakukan pengamatan suhu, pH, dan organoleptik terhadap warna, bau dan tekstur.

Rancangan Penelitian

Penelitian menggunakan ini Rancangan Acak Lengkap (RAL) dengan 4 perlakuan dan 5 ulangan. Perlakuan yang diterapkan adalah sebagai berikut:

- T0 = Ampas Tahu + 2.5 % Probio FM + 0%Tapioka
- T1 = Ampas Tahu + 2.5 % Probio FM + 3%Tapioka
- T2 = Ampas Tahu + 2.5 % Probio FM + 6%
- T3 = Ampas Tahu + 2.5 % Probio FM + 9%Tapioka

Peubah yang Diamati

Derajat Keasaman (pH) (Metode Suwetia, 2007)

Pengukuran Derajat Keasaman (pH) dengan menggunakan pH meter. Dengan urutan kerja sebagai berikut:

- 1. Timbang sampel sebanyak 10 gr homogenkan dengan menggunakan aquades 20 ml selama 1 menit.
- 2. Tuang kedalam beker glass 10 ml, kemudian diukur pH nya dengan menggunakan pH meter.
- 3. Sebelum pH meter digunakan, harus ditera dengan kepekaan jarum penunjuk dengan larutan buffer pH 7.
- 4. Besarnya pH adalah pembacaan jarum penunjuk pH setelah jarum skala konstan kedudukannya.

e-mail: vatno@unja.ac.id

^{*} Korespondensi (corresponding author):

Bahan Kering (BK) (Metode AOAC, 1980)

Bahan Kering dihitung untuk mengetahui seberapa besar kadar air yang ada didalam silase. Perhitungan dilakukan dengan cara menghitung berat kering udara dikurangi berat segar dikali 100%. Kemudian lakukan perhitungan kadar air dengan cara

KA (%) = 100% - BK (%)

N-Amoniak (NH₃) (Metode University of Wincosin, 1966)

- 1. Pada pengukuran NH₃ silase digunakan supernatan pengukuran pada sebanyak 1 ml, lalu ditempatkan pada salah satu ujung jalur cawan Conway yang telah diolesi vaselin, kemudian dipipet 1 ml larutan Na₂CO₃ lalu ditempatkan pada sisi yang bersebelahan dengan sampel, selanjutnya dipipet asam borat berindikator sebanyak 1 ml, lalu ditempatkan dibagian tengah cawan.
- 2. Setelah itu cawan Conway ditutup rapat dan supernatant+larutan Na₂CO₃ dicampur hingga rata dengan cara memiringkan posisi cawan conway. Kemudian, disimpan selama 24 jam pada suhu kamar dan setelah 24 jam. Setelah 24 jam, cawan dibuka dan dititrasi dengan menggunakan H₂SO₄ 0.005 N sampai terjadi perubahan dari biru menjadi warna Kemudian kadar NH₃ (mM) dihitung dengan rumus:

$NH_3 (mM) = ml H2SO4 \times N H2SO4 \times 1000$ g sampel x BK sampel

Asam Laktat (Hadiwiyoto S, 1994)

Cara kerja:

- 1. 10 gr sampel dihalukan
- Dilarutkan dengan aquadest sampai volume 100 ml
- Diamkan selama 30 menit dan diaduk
- 4. Larutan kemudian disaring dan dipipet 10
- Tambahkan 2-3 tetes fenolftalin 1 %
- Titrasi dengan N_aOH 0,1 N sampai warna merah mudah

Rumus:

Total Asam Laktat (%) = $a \times b \times c \times d \times 100\%$

- Jumlah NaOH yang dibutuhkan dalam titrasi (ml)
- b = Normalitas NaOH (0,1 N)

c = Berat aquvalen asam laktat (90)

d = Faktor pengenceran (10)

e = Berat sampel (mg)

Populasi Bakteri Asam Laktat (Fardias., 1989)

Setelah silase ampas tahu diperoleh selanjutnya adalah penentuan jumlah koloni BAL masing-masing isolate cairan silase ampas tahu diukur menggunakan metode Total Plate Count (TPC) dengan metode agar tuang atau sebar. Prinsip metode ini adalah sel bakteri asam laktat (BAL) dalam sampel ditumbuhkan pada medium agar dan diinkubasi selama 24-48 jam. Sel BAL akan tumbuh membentuk koloni yang dapat dilihat secara visual, sehingga dapat langsungn dihitung. (Fardias 1989).

Pereaksi/bahan:

- 1. Aquadest
- 2. Larutkan MRS agar 39,0 g dalam 1 liter aquadest hingga tanda tera. Panaskan diatas hot plate stirrer sambil diaduk hingga mendidih. Lalu disterilisasi, suhu media dipertahankan 45-55°C dalam penangas air untuk menjaga agar media tidak membeku.
- 3. Larutkan Buffered peptone water (BPW) dalam 1 liter aquadest hingga tanda tera.Panaskan diatas hot plate stirrer sambil diaduk hingga mendidih. Sebanyak 9 ml BPW dipipet kedalam tabung reaksi yang ditutup dengan kapas. Lalu disterilkan dalam autoclave pada suhu 121°C selama 15 menit dengan tekanan 1 atm.

Cara Kerja:

- 1. Sebanyak 1 ml sampel dipipet kedalam tabung reaksi yang berisi 9 ml pengencer steril sehingga didapatkan pengenceran 10⁻¹.
- 2. Dari larutan tersebut dipipet 1 ml, kemudian dimasukkan kedalam tabung reaksi yang telah berisi 9 ml larutan pengencer steril untuk memperoleh pengenceran 10⁻². Demikian seterusnya sampai diperoleh pengenceran 10⁻⁵. (sesuai dengan pendugaan tingkat pengenceran).
- 3. Dari tiap pengenceran, dipipet 1 ml dan 15 ml media MRSA steril dimasukan kedalam cawan petri steril, setiap pengenceran dilakukan. Lalu digerakkan di-

- atas meja dengan gerakkan melingkar agar media MRSA merata.
- 4. Setelah MRSA membeku, cawan petri diinkubasi dengan posisi terbalik dalam inkubator pada suhu 37°C selama 20 jam. Setelah waktu inkubasi, koloni yang tumbuh pada cawan petri dapat dihitung dengan jumlah koloni yang diterima 30-300 koloni percawan.

Kemudian dihitung sebagai berikut : Populasi BAL (cfu/g) = Jumlah Koloni x 1 Pengenceran

Nilai Fleigh (Kilic, 1984)

Perhitungan Nilai Fleigh (NF) dihitung mengikuti rumus yaitu :

 $NF = 220 + (2 \times BK\% - 15) - 40 \times pH$

Keterangan:

NF: Nilai Fleigh BK: Bahan Kering pH: Derajat Keasaman

Analisis Data

Data yang dihimpun dianalis menggunakan analisis ragam dengan model matematis RAL (Rancangan Acak Lengkap) seperti yang tertera dibawah ini:

$$Y_{ii} = \mu + \alpha_i + C_{ii}$$

Keterangan:

Y_{ij} = Nilai Pengamatan pada perlakuan ke-i dan ulangan ke-j

μ = Nilai rataan umum

 α_i = Pengaruh perlakuan ke-i

€_{ij} = Pengaruh galat percobaan dari perlakuan ke-i dan ulangan ke-i

i = Pelakuan (1, 2, 3, dan 4)

i = U (1, 2, 3, 4, dan 5)

Apabila terdapat hasil yang berpengaruh nyata pada perlakuan maka dilanjutkan dengan uji DMRT (Duncan Multiple Range Test) untuk mengetahui perbedaan antar perlakuan (Steel dan Torrie, 1995)

HASIL DAN PEMBAHASAN Keadaan Umum Selama Penelitian

Bahan dasar pembuatan silase berupa ampas tahu segar yang merupakan limbah dari proses pembuatan tahu dan cukup potensial digunakan sebagai bahan pakan karena ampas tahu masih mengandung gizi dan

e-mail: vatno@unja.ac.id

^{*} Korespondensi (corresponding author):

tergolong sebagai pakan sumber protein bagi ternak. Dimana suatu bahan pakan dapat digolongkan sebagai sumber protein bila bahan pakan tersebut mengandung protein minimal 20%. Sesuai dengan pendapat Anggraeni et al., (2013) bahwa ampas tahu mengandung zat makanan yang cukup baik yaitu protein kasar sekitar 22,64%.

Ampas tahu disamping memiliki kadar protein yang cukup tinggi, akan tetapi bahan pakan ini mengandung bahan kering yang rendah atau banyak mengandung air. Tingginya kandungan protein dan air menyebabkan ampas tahu tidak tahan lama disimpan karena mudah mengalami pembusukkan akibat tumbuhnya mikroorganisme perusak. Sehingga perlu dilakukan pemerasan agar kadar airnya berkurang dan bisa tercapai bahan kering sesuai dengan standar pembuatan silase.

Selain itu suhu juga menjadi sesuatu yang harus diperhatikan dalam pembuatan silase. Menurut Hidayat (2014) bahwa suhu silase yang baik berkisar antara 25°C-37°C. Hal ini sesuai dengan pembuatan silase yang dilakukan yaitu suhunya berkisar 31°C, berarti suhu pada silase tergolong baik dan kehidupan bakteri asam laktat tetap terjamin, sehingga proses ensilase akan berjalan dengan baik.

Pembuatan silase dilakukan penambahan akselerator dimana akselerator ini dapat mempercepat kinerja bakteri asam penambahan Fungsi akselerator sebagai bahan makanan dari bakteri asam laktat atau sebagai aditif tidak langsung untuk menstimulasi supaya bakteri menghasilkan asam laktat yang banyak. Akselerator yang digunakan berupa tepung tapioka, yang digunakan sebagai media kultur bakteri karena mempunyai kandungan karbon tinggi yang berasal dari karbohidrat dan juga mempunyai kandungan nitrogen yang rendah. Di lanjutkan probio_FM yang dengan penambahan merupakan probiotik yang dikembangkan oleh Fakultas Peternakan Universitas Jambi yang berasal dari mikroorganisme yang terdapat disaluran pencernaan ayam kampung lokal. Probiotik ini dapat dimanfaatkan dalam fermentasi bahan pakan sebagai proses pengganti antibiotik untuk meningkatkan kesehatan ternak jika diberikan melalui air minum (Novianti dkk., 2015). Menurut Attaufik (2017), yang menyatakan bahwa se-

* Korespondensi (corresponding author):

e-mail: yatno@unja.ac.id

makin tinggi penggunaan Probio_FM maka pH yang dihasilkan akan lebih rendah.

Karakteristik Kimia dan Mikrobiologi Silase Ampas Tahu

Hasil nilai rataan karakteristik kimia dan mikrobiologi silase ampas tahu tercantum atau disajikan pada Tabel 1.

Tabel 1. Rataan Karakteristik Kimia dan Mikrobiologi Silase Ampas Tabu

	Peubah								
	BK (%)	pН	N-	BAL	Asam	Nilai			
			Amoni	(cfu/ml	Laktat	Fleigh			
			a		(%)				
			(mM)						
T0	$14,54^{b}\pm$	$3,63^{a}\pm$	$0,19^{a}\pm$	$8,393^{a}\pm$	$0,162^{a}\pm$	$88,888^{c}\pm$			
	0,60	0,168	0,02	0,55	0,02	7,57			
T1	$14,63^{b}\pm$	$3,40^{b}\pm$	$0,17^{a}\pm$	$8,989^{a}\pm$	$0,158^{a}\pm$	102,024 ^b			
	0,92	0,071	0,03	0,71	0,02	$\pm 5,56$			
T2	$19,72^{a}\pm$	$3,32^{b}\pm$	$0,17^{a}\pm$	$8,351^{a}\pm$	$0,280^{a}\pm$	111,640 ^a			
	0,99	0,084	0,03	0,46	0,13	$\pm 4,56$			
T3	$20,89^{a}\pm$	$3,32^{b}\pm$	$0,17^{a}\pm$	$8,938^{a}\pm$	$0,232^{a}\pm$	111,784 ^a			
	0,92	0,083	0,03	0,61	0,07	$\pm 4,25$			

Keterangan: Superskrip yang berbeda pada kolom yang sama menunjukkan perbedaan nyata (P<0,05), superskrip yang sama pada kolom yang sama menunjukkan perbedaan yang tidak nyata (P>0,05). T0(Ampas Tahu+ 2,5% Probio FM+0% Tapioka), T1(Ampas Tahu+2,5% Probio FM+6% Tapioka) dan T3(Ampas Tahu+2,5% Probio FM+9% Tapioka)

Kandungan Bahan Kering Silase Ampas Tahu

Hasil analisis ragam menunjukkan bahwa level penggunaan tapioka pada silase ampas tahu dipengaruh secara nyata (P<0,05) terhadap Bahan Kering (BK) silase. Hal ini disebabkan karena pengaruh dari pemberian level tapioka, dimana semakin tinggi level yang digunakan sejalan dengan bahan kering yang semakin meningkat dan juga penurunan nilai pH yang rendah (<4,0). Sesuai dengan pendapat Wahidin (2018), menyatakan bahwa tapioka memiliki bahan kering yang tinggi akan meningkatkan bahan kering pada silase ampas tahu, karena semakin tinggi pemberian tapioka akan meningkatkan bahan kering silase yang dihasilkan. Selanjutnya Tangendjaja et al., (1992), bahwa bila pH >5,0 dan kadar bahan kering 50% maka bakberacun clostridia akan tumbuh, sedangkan nilai pH yang terlalu rendah <4,1 dan bahan kering 15% akan menyebabkan mikroba terkontaminasi.

Derajat Keasaman (pH) Silase Ampas Tahu

Hasil analisis ragam menunjukkan bahwa level penggunaan tapioka pada silase ampas tahu memberikan pengaruh yang nyata

(P<0,05) terhadap pH silase. Setelah dilakukan uji DMRT menunjukkan bahwa pemberian berbagai level tapioka sebagai akselerator menghasilkan perbedaan nyata (P<0,05) terhadap pH silase ampas tahu. Penurunan pH silase pada penelitian ini disebabkan oleh asam yang dihasilkan bakteri asam laktat (BAL) selama proses ensilase.

Wallace dan Chesson (1995), menyatakan bahwa asam yang dihasilkan selama ensilase adalah asam laktat, propionate, formiat, suksinat dan butirat. Menurut McCullough (1978), bahwa silase dapat digolongkan menjadi 4 kriteria yaitu baik sekali (pH 3,2-4,2), baik (pH 4,2-4,5), sedang (pH 4,5-4,8), dan buruk (pH>4,8).

Berdasarkan criteria McCullough (1978) bahwa penggunaan berbagai level tapioka menghasilkan pH silase yang baik sekali pada semua perlakuan termasuk kontrol. Dengan demikian kondisi tersebut akan menghambat pertumbuhan mikroorganisme vang merugikan dan tidak dikehendaki pada suatu silase. Mikroorganisme yang merugikan dapat menyebabkan kebusukan pada suatu produk akibat produksi bahanbahan lain yang tidak dikehendaki seperti CO2 maupun asam butirat, yang menyebabkan rendahnya kualitas silase yang dihasilkan.

Penurunan pH menunjukkan jadinya proses fermentasi. Penurunan pH pada proses fermentasi mengindikasikan terjadinya fermentasi glukosa menjadi asam laktat. Utomo (2000) bila asam laktat yang terbentuk banyak maka pH akan turun. Penurunan pH sangat ditentukan dengan jumlah bakteri asam laktat karena derajat keasaman asam laktat dihasilkan oleh bakteri pembentuk asam laktat merupakan deraiat keasaman tertinggi dibandingkan asam-asam organik lainnya yang terbentuk selama proses fermentasi. Kadar pH yang rendah tersebut menyebabkan mikroba yang tidak tahan pada pH rendah akan mati sehingga hanya tersisa mikroba yang mampu bertahan hidup pada pH rendah.

Kandungan N-Amonia (NH₃) Silase Ampas Tahu

Hasil analisis ragam menunjukkan bahwa level penggunaan tapioka pada silase ampas tahu memberikan pengaruh yang tidak nyata (P<0,05) terhadap NH₃ silase. Hal ini disebabkan karena penurunan pH yang

* Korespondensi (corresponding author): e-mail: yatno@unja.ac.id tinggi sehingga proses fermentasi berjalan sempurna pada setiap perlakuan, dan pada saat proses anaerob asam laktat sudah terbentuk dan menghambat bakteri pembusuk untuk hidup.

Amonia pada silase adalah hasil hi-

Amonia pada silase adalah hasil hidrolisis protein menjadi ammonia oleh bakteri clostridium yang dilakukan oleh enzim protemenjadi asam amino mudian menjadi amina dan amonia tergantung pada kecepatan penurunan pH. NH₃ yang terbentuk pada silase diduga disebabkan oleh bakteri clostridium yang sudah mulai berkembang. Bakteri clostridium mengkonsumsi karbohidrat, protein dan asam laktat sebaagai sumber energi dan memproduksi asam butirat. Tetapi bakteri ini bersifat merugikan karena menguraikan asam amino yang nyebabkan menurunnya kandungan protein dan menghasilkan amonia sehingga menyebabkan pembusukan. McDonald et al., (2002) yang menyatakan bahwa pemecahan protein menjadi asam amino dan pembentukan ammonia

sebagian besar berasal dari bakteri clostridium.

Populasi Bakteri Asam Laktat (BAL) Silase Ampas Tahu

Hasil analisis ragam menunjukkan bahwa level penggunaan tapioka pada silase ampas tahu memberikan pengaruh yang tidak nyata (P<0,05) terhadap populasi bakteri asam laktat (BAL). hal ini diduga karena pemlevel tapioka berian sudah cukup memberikan cadangan nutrisi yang cukup untuk bakteri asam laktat (BAL) karena kandungan water soluble carbohydrate tepung tapioka yang dicerna oleh BAL sudah cukup banyak untuk dijadikan sumber energi dan berkembangbiak menghasilkan asam laktat. Bata (2008) menyatakan bahwa bahan vang mengandung karbohidrat dapat digunakan sebagai energi bagi pertumbuhan bakteri yang terdapat pada bahan sehingga membentuk asam laktat dan penurunan pH.

Gambar 2. Koloni Bakteri Asam Laktat yang diperoleh pada Akhir Pembuatan Silase

Kandungan Asam Laktat Silase Ampas Tahu

Hasil analisis ragam menunjukkan bahwa level penggunaan tapioka pada silase ampas tahu memberikan pengaruh yang tidak nyata (P<0,05) terhadap kandungan asam laktat.

Hal ini didukung oleh Ohshima et al., (1997) menyatakan upaya mempertinggi efektivitas ensilase bisamelalui pemberian aditif. Hal ini dapat terjadi apabila diimbangi dengan ketersediaan karbohirat mudah larut yang memadai. Sesuai yang disampaikan Salminenet al., (1998) bahwa asam dengan laktat terbentuk dari bahan baku karbohidrat mudah larut, melalui proses enzimatis oleh enzim komplek yang terbentuk oleh bakteri asam laktat. Hal ini didukung oleh Nunung (2012) yang menyatakan bahwa sumber karbohidrat merupakan substra bagi bakteri asam laktat dan menghasilkan senyawa asam yang mengakibatkan terjadi penurunan pH sehingga mematikan bakteri pembusuk dan bakteri pathogen tidak dapat tumbuh. Bakteri asam laktat mampu menghambat pertumbuhan pathogen. Hal ini didukun oleh Yang (2000) yang menyebutkan bahwa bakteri asam laktat menghasilkan berbagai komponen anti bakteri lainnya seperti hvdrogen peroksida (H₂O₂), karbondioksida (CO₂), diasetil dan bakteriosin.

Hal ini kemungkinan disebabkan karena pH menurun dan popukasi bakteri menurun yang berimplikasi terhadap asam laktat juga rendah. Hal ini didukung oleh Amin dan Leksono (2001) menyatakan substansi penghambat BAL dipengaruhi oleh media pertumbuhan, pH dan suhu lingkungan. Todorov dan Dicks (2005) menyatakan produksi bakteriosin dipengaruhi oleh pH dan temperature, bahkan pada beberapa kasus terjadi

e-mail: vatno@unja.ac.id

aktivitas bakteriosin terjadi saat bakteri berada pada kondisi sub optimal pertumbuhan. Lebih lanjut Fardiaz (1992) menyatakan bahwa produksi asam oleh bakteri asam laktat dapat menghambat pertumbuhan mikroorganisme lain yang tidak diinginkan. Delgado et al., (2001) menyebutkan aktivitas penghambat bakteri asam laktat terjadi oleh akumulasi metabolit primer (asam laktat, asam asetat, etanol, karbohidrat) dan produksi komponen anti mikroba lain seperti hydrogen peroksida, diasetil, bakteriosin.

Nilai Fleight (NF) Silase Ampas Tahu

Parameter lain yang menentukan kualitas silase vaitu nilai fleigh (NF). Niai fleigh merupakan indeks karakteristik fermentasi silase berdasarkan nilai BK dan pH dari silase (Indikut et al., 2009). Berikut ini adalah kisaran nilai fleigh menurut Indikut et al., (2009), jika nilai fleigh berada pada nilai (>85) dinyatakan silase yang dihasilkan berkualitas baik sekali, 60-60 baik, 40-60 cukup baik. 20-40 sedang dan kurang baik mempunyai NF<20 (Indikut et al., jika 2009). Pada perhitungan NF dengan komponen BK dan pH pada masing-masing perlakuan (dapat dilihat pada tabel 5), diketahui bahwa silase pada penelitian berkualitas baik. Nilai fleigh pada setiap perlakuan melebihi angka 100 kecuali namun nilai fleigh yang melebihi angka 100 juga ditemukan oleh Indikut et al., (2009). Tingginya bahan kering (BK) dan rendahnya pH akan menentukan tingginya nilai fleigh, sehingga penambahan level tapioka pada silase ampas tahu dapat disesuaikan dengan kebutuhan.

Hubungan Antar Peubah Terhadap Kualitas Silase Ampas Tahu

Kualitas silase selain ditentukan dengan kualitas fisik, kualitas silase yang baik juga ditentukan dengan didapatnya pH yang optimum. Nilai pH silase merupakan faktor penting yang mempengaruhi fermentasi serta kualitas silase yang dihasilkan. Peningkatan populasi bakteri pada silase menyebabkan produksi asam laktat meningkat sehingga pH silase menjadi rendah. Penurunan pH yang semakin cepat dikarenakan semakin bertambahnya asam laktat yang diproduksi oleh bakteri asam laktat.

^{*} Korespondensi (corresponding author):

Berdasarkan hasil yang diperoleh dari beberapa peubah yang diamati maka dilakukan matrik seperti pada Tabel 2.

Tabel 2. Hasil Matriks dari Beberapa Peubah yang Diamati pada Silase Ampas Tahu

pus - u											
Perlakuan	BK	pН	Amonia	BAL	AL	NF	Jumlah				
	(%)	-	(ml/mol)	(cfu/ml)	(mg/ml)						
Т0	-	1	1	1	-	-	3				
T1	-	1	1	1	-	-	3				
T2	1	1	1	1	1	1	6				
T3	1	1	1	1	1	1	6				

Keterangan: Perlakuan yang terbaik pada setiap variable yang diamati diberi skor 1

Secara keseluruhan dari semua peubah yang diamati bahwa silase yang menggunakan akselerator berupa tepung tapioka sampai taraf 9% lebih baik dibandingkan dengan kontrol (tanpa menggunakan akselerator berupa tepung tapioka). Silase ampas tahu yang menggunakan akselerator berupa tepung tapioca sampaai taraf 9% merupakan silase yang terbaik (diberi skor 6) karena mampu meningkatan populasi bakteri pada silase dan menyebabkan produksi asam laktat meningkat sehingga pH silase menjadi rendah. Penurunan pH yang semakin cepat dikarenakan semakin bertambahnya asam laktat yang diproduksi oleh bakteri asam laktat.

KESIMPULAN

Kesimpulan

Hasil penelitian dapat disimpulkan bahwa penggunaan 6% tapioka sebagai akselerator mampu menghasilkan silase ampas tahu berkualitas, yang ditandainya dengan populasi bakteri asam laktat, dan asam laktat yang tinggi, pH asam serta nilai NF yang cukup baik.

Saran

Perlu dilakukan uji biologi langsung kepada ternak, sehingga tingkat palatabilitas tersebut lebih nyata dan juga perlu dilakukan pengembangan penelitian terhadap pengaruh akselerator tapioka terhadap limbah pakan ternak lainnya.

DAFTAR PUSTAKA

Anggraini, S. Hasibuan, B. Malik and R. Wijaya. 2013. Improving the quality of tofu waste as a source of feed though fermentation using the bacillus amyloliquefaciens culture. International Journal on Advanced Science Engi-

e-mail: yatno@unja.ac.id

- neering Technology. Vol. 3, No. 4 pp: 22-25
- AOAC. 1980. Official Methods of Analysis of the Associaton of Official Analytical Chemist. Edisi ke Riga. PO BOX 540. Benjamin Franklin Station Washington DC 2004.
- Attaufik, F. 2017. Pengaruh Penggunaan Probio-FM dan Lama Ensilase terhadap Kualitas Fisik Silase Ampas Tahu sebagai Pakan Ternak. Skripsi. Fakultas Peternakan Universitas Jambi. Jambi.
- Bata, M. 2008. Pengaruh Molases pada Amoniasi Jerami Padi Menggunakan Urea terhadap Kecernaan Bahan Kering dan Bahan Organik In Vitro. Jurnal Agripet Vol. 8, No.2.
- Delgado A, Brito D, Fevereiro P, Peres C, Marques JF. 2001. Antimicrobial activity of *L. plantarum*, isolated from a traditional lactic acid fermentation of table olives. INRA, EDP Sci. 81:203-215.
- Fardiaz, S. 1992. Mikrobiologi Pangan I. Penerbit PT. Gramedia Pustaka Utama. Jakarta.
- Fardias. Srikandi. 1989. Penuntun Praktek Mikrobiologi Pangan. Lembaga Sumberdaya Informasi (LSI). IPB Bogor. Bogor.
- Hadiwiyoto S. 1994. Teori dan Prosedur Pengujian Mutu Susu dan Hasil Olahannya. Liberty, Yogyakarta.
- Hidayat, N. 2014. Karakteristik dan Kualitas Silase Rumput Raja Menggunakan Berbagai Sumber dan Tingkat Penambahan Karbohidrat *fermentable*. Agripet. Vol. 14 (1): 442 49.
- Indikut, L., B. A. Arikan, M. Kaplan, I. Gaven, A. I. Atalay, and A. Kamalak. 2009. Potential Nutritive Value of Sweet Corn As a Silage Crop With or Without Corn Ear. Animal Veteriner Advanced 8: 734-741.
- Kilic, A. 1984. Silo Yemi (Silage Feed). Bilgehan Press. Izmir, Turkey.
- Manin, F., E. Hendalia, Yatno, dan P. Rahayu. 2013. Dampak Pemberian Probiotik Probio_FM terhadap Status Kesehatan Ternak Itik Kelinci. Jurnal Ilmu Ternak 1:2:7-11.

^{*} Korespondensi (corresponding author):

- McCullough, M. E. 1978. Fermentasi of Silage. A. Review (National Feed Ingredients Association). Grants-In-Aid Commite, West Des Moines, IOWA.
- McDonald, P., R. A. Edwards, J. F. D. Greenhlgh, and C.A. Morgan. 2002. Animal Nutrition, 6th Ed. Prentice Hall, London.
- Moorthy SN. 2004. Tropical sources of starch.

 Di dalam: Ann Charlotte Eliasson
 (ed). Starch in Food: Structure, Function, and Application. CRC
 Press, Boca Raton, Florida.
- Muller, Z., K. C. Chou, and K. C. Nah. 1975.

 Cassavana as a total substitute for sereal in livestock and poultry ratio.

 Animal feed of troffical and substropical origin held at London schoolof pharmacv. Tropical Products Institute, 85-95.
- Novianti, S., Adriani, J. Andayani, Filawati dan S. Erina. 2015. Peningkatan Produktivitas Ayam Kampung melalu pemanfaatan Dedak Fermentasi dengan Probio_FM di Dusun Air Sempit Desa Simpang Tiga Kecamatan Hamparan Rawang Kota Sungai Penuh. Jurnal Pengabdian pada Masyarakat 30:3:24-29.
- Nunung A. 2012. Silase Ikan untuk Pakan Ternak. Makassar (Indonesia) : Dinas Peternakan Sulawesi Selatan.
- Ohmoho, S., O. Tanaka, H. K. Kitamoto, and Y. Cai. 2002. Silage and microbial performance, old story but new problems. JARQ 36:2:59-71.
- Ohshima ME, Kimura, Yokota H. 1997. A method of making good quality silage from direct cut alfalfa by spraying previously fermented juice. J. Anim Feed Sci Technol. 66: 129 137.
- Salminen S, Atte van W. 1998. Lactic acid bacteria microbiology and functional aspect. 2nd Ed. New York (USA), Basel (Belgium): Marcel Dekker, Inc.
- Subagiyo, S. Margino, dan Triyanto. 2015.

 Pengaruh penambahan berbagai jenis sumber karbon, nitrogen, dan fosfor pada *Deman, Rogosa and Shape* (MRS) terhadap pertumbuhan bakteri asam laktat terpilih yang diisolasi dari intestinum udang
- * Korespondensi (corresponding author):
- e-mail: yatno@unja.ac.id

- penaeid. Jurnal Kelautan Tropis Vol. 18 (3): 127 132
- Suwetja, I. K. 2007. Biokimia Hasil Perikanan. Jilid III. Rigormortis, TMAO, dan ATP. Fakultas Perikanan dan Ilmu Kelautan. Universitas Sam Ratulangi Manado.
- Todorov SD, Dicks LM. 2005. Optimization of baccteriocin ST311LD production by Enterococcus faecium ST311LD, isolated from spoiled black olives. J Microbiol. 43 (4): 370-374.
- University of Winconsin. 1966. General Laboratory Prosedure Departemen of Dairy Science. New York. USA.
- Wallace, R. J and C. Chesson. 1995. Biotechnology in Animal Feeds and Animal Feeding. Winheim. Ithaca and London.
- Wahidin. 2018. Pengaruh Penggunaan Tapioka dan Inokulan Probio_FM terhadap Nilai pH dan Sifat Fisik Silase Ampas Tahu. Skripsi. Fakultas Peternakan Universitas Jambi, Jambi.
- Yang, H. Y., X. F. Wang, J. B. Liu, L. J. Gao, M. Ishii, Y. Igarashi and Z. J. Cui. 2006. Effect of water-soluble carbohydrate content on silage fermentation of wheat straw. Journal of Biosci. And Bioengineering. Vol. 101 (3): 232 237.
- Yusrizal, Manin, dan P. Rahayu. 2015. peningkatan produktivitas ternak itik melalui pemberian silase ikan rucah dan limbah udang dengan menggunakan probiotik probio FM di Desa Teluk Sialang Kecamatan Tungkal Hilir Tanjung Jabung Barat. Jurnal Pengabdian pada masyarakat. 30:35-40.